CONSEQUENCES OF THEOREM OF THE CURE:

Theorem of the cube! Let X_1Y be complete varieties, $\frac{1}{2}$ variety, $(x_0,y_0) \in X_1 \times Y_1$ and $\frac{1}{2} \in \mathbb{R}$. Let \mathcal{L} be a line bundle on $X_1 \times Y_2 \times Y_3 \times Y_4 \times Y_4 \times Y_5 \times Y_5$ then \mathcal{L} is trivial.

Today:

(1) Any Abelian uciety is projective.
(2) Any Abelian variety is a divisible group + Study the Structure of torsion points.

Corollary: If X is any variety, 7 abelian variety $f,g,h:X \rightarrow Y$ and $\mathcal{L} \in Pic(Y)$. Then $(f+g+h)*\mathcal{L} \cong (f+g)*\mathcal{L} \otimes (f+h)*\mathcal{L} \otimes (g+h)*\mathcal{L} \otimes f*\mathcal{L}^{-1} \otimes g*\mathcal{L}^{-1} \otimes h*\mathcal{L}^{-1}$.

Proof: We show that M := LHS & (RHS) is trivial. Note that M= (f,g,h)*(m*L & m1,2*L-1 & m1,3*L-1 & m2,3*L-1 & p*L & p2*L & p3*L).} F

With m: $7\times 7\times 7 \rightarrow 7$ miz: $7\times 7\times 7 \rightarrow 7$ p;: $7\times 7\times 7 \rightarrow 9$ projection. (piqir) \rightarrow p+q

Claim: M| $7\times 7\times 7\times 7$ M| $7\times 7\times 7\times 7$ M| $7\times 7\times 7\times 7$ Are all trivial.

This Claim \Rightarrow M trivial by the of the cube.

M/YXYX107 = (M1)*L & (M1)*L - & p*L-1 & p*L-1 & p*L & $m': Y \times Y \longrightarrow Y$ $(p, q) \longmapsto p + q.$

Definition: Let X be an abelian valety, $L \in PicX$ define $\Phi_L: X \longrightarrow PicX$ with Tx: X > X , p -> p+x. $x \longmapsto [Tx^* \mathcal{L} \otimes \mathcal{L}^{-1}]$

We want to study $\ker \Phi_{\mathcal{L}} =: \mathsf{K}(\mathcal{L})$.

Corollary: (thm of the square), Let LEPicX, x,y ∈ X then Tx*y (L&L) = Tx*L & Ty*L.
i.e \(\Pi_{\mathcal{E}}(\times + \text{y}) = \Pi_{\mathcal{E}}(\times) \& \Pi_{\mathcal{E}}(\times).

Proof. Apply the above corollary to d and $f: X \rightarrow 923$, $g: X \rightarrow 1y3$, h=idx. \square .

Proof: K(L) is a Ziriski closed subgroup of X. Proof: $T_x^*L\otimes L^{-1} = (m^*L\otimes p_2^*L^{-1})_{\{x \in X : T_x^*L\otimes L^{-1} = \Phi_L(x) \text{ is trivial } \}$ is closed.

Application (1): Any abelian variety is projective. We use the following criterion for ampleness,

Lemma: Let D be an effective divisor on X, L(D) the associated line budge. TFAE, (i) $H:=\{x\in X\mid T_x^*D=D\}\subseteq K(L)$ is finite. $(T_x^*D=D)$ as divisors).

(ii) K(d) is finite

(iii) Linear system (2D) is base point free and $X \xrightarrow{12D} IPN$ is finite.

(iv) I is ample.

We now show that (i) is true for on appropriate D. Let USX be on affine, open subset, Containing D, XIU = D, U — UD, Di III. divisor then D = [Di.

H is a closed subgroup of X hence H is complete and V is stable under translation by elements

```
of H=> HCU => H is affine. => H is affine + complete => H is finite === X is projective.
                                             (iii) => (iv): use Serre's Cohomological criterion for ampleness:
Hoof of Lemma:
                                              H^{i}(X, O(nD)\otimes F) = O is 0 n>>0 and compute H^{i}(X, O(nD)\otimes F)
   (iii) \Rightarrow (iv)
                                             using a spectral sequence, X InDI=10, IPN finite,
    (i) (ii)
                                                  Grotherdieck's spectrul
 HP(IPN, R9(0*(F&O(nD)) - HP+9(X, F&O(nD)) hower R9(4*(F&O(nD))=0
 for 9>0 since le is finite => spectral sequence is degenerate on page 2.
        (Slogan: pullback of ample via finite map is ample).
(iv) ⇒ (ii) by contradiction of is ample, K(L) not finite. Y⊆ K(d) positive dim. abelian subvariety
  Lly & (-1y*1 Lly is both ample & trivial, ample as Lly and (-1y*) Lly are comple,
 trivial by the thm. of the cutse applied to m*Lly & pi*L-14 & pz*L-14 + pullback along (Selsow theorem)
(i) \Rightarrow (iii) Basepoint freeness: \forall x \in X \ T_x^*D + T_{-x}^*D \in |2D| by squere thm. Assume that H is finite and suppose by contradiction, (q:X] \frac{12D1}{12D1}, |P^N| is not finite.
Then some irr. curve C = X is contracted to a point.
          idea: from C, Vx, 1x26 C Tx, x2 D=D contradicts H being finite.
 Application 2: X is a divisitle group and for n \ge 1 X_n = \ker(n \cdot x) is finite.
Corollary: For n \in \mathbb{Z} L \in P_{i}(X), n * L = L \otimes_{\frac{1}{2}} (n^{2} + n) \otimes (-1_{X}) * L \otimes_{\frac{1}{2}} (n^{2} - n)

Proof: (n+2) * L \otimes (n+1) * L \otimes_{(-2)} \otimes n_{X} * L = L \otimes_{(-1_{X})} * L i.e for <math>\forall n = n * L, \forall n+2-2 \forall n+1 \neq V, this holds by corollary 2 applied to (n+1)_{X}, g = 1_{X}, h = -1_{X} then by industrian (n+1)_{X}, g = 1_{X}, h = -1_{X} then
by induction he are done.
Went to show, ker(nx) is finite => nx is surjective, dimkernx + dim Imnx = dimX
I completine bunchle on X => notal is comple by above corollary. Also notal | kerlinx) is trivial.
Proposition:
(1) deg n_x = n^{29} g = dim X (2) n_x is separate \Rightarrow ptn p = chcre.
(3) p + n \Rightarrow X[n] = (\mathbb{Z}/m\mathbb{Z})^{29} \times [n] = kernx.
( [[pn2]] = ( [[pn2])
 Reminder: finite Surj. morphisms between complete uccieties,
                         \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & 
      tacts: If D, _, Dn are divisors on Y (n=dimy) then
                            (f^*D_1. \underline{\hspace{1cm}} f^*D_n)_{\times} = dag(fl.(D_1. \underline{\hspace{1cm}} D_n)_{Y}.
         · #f-'ly! = Sepdegf for almostall >
         · Consider 52/kg//e ⊗e le(x) _ 2 > 52/ecn/e
                   f is separable (=) of is injective.
                   le(4) ≤ le(x) = 0°.
 Proof: Compute deg(f): Choose D comple E=D+(-1)*D then (-1)*E=E
                                                                                                           ≠0 cs € cmple
 ⇒ nžE = n²E.
      degnx(€._.E)= (n2, €,_, n2E)x = n29 (€,_, E)x = degnx=2g.
```

 $\#X[n]=\#\ker x=\# \text{ fiber of } nx=\text{ Sepaleg}(nx). ptn \Rightarrow ptaleg}(nx)\Rightarrow nx is separable.$ $<math>\Rightarrow \#\ker nx=n^{29} \text{ for ptn. We know that } \ker(nx)=\mathscr{U}d_1\mathscr{U}x_x\mathscr{U}/d_r\mathscr{U}d_1$ | Idr Consider fld, prime #XTP] = p29 = pr => r=29. Moreover dila so d_1 . _. $d_{2g} = n^{2g}$ hence $d_i = n$. $\forall i$.

 $p \mid n \Rightarrow n \times is not separable. #X[p^n] = (p^m)^i O \le i \le g.$ $L = n \stackrel{*}{\cancel{\sim}} (k(x)) \subseteq k(x)$

Show: $\mathcal{N}_{L/L} \otimes_{L} \ell(x) \xrightarrow{O} \mathcal{N}_{L/L} (1) d(nx)_{O} = n. id_{Tx_{10}} = 0.$

(2) invariant differentials globally, generate $\mathcal{N}_{\mathsf{X}}'$

L⊆ $k(x)^p \longrightarrow [k(x):L] \ge p^g:$ take $t_1, _, t_g$ transcendence basis of k(x). t_i^2 : $1 \le i \le g$ $0 \le j \le p-1$ ove i in indep. over $k(x)^p \ge L$.